Lattice cryptography will discourage even quantum-powered hackers

Lattice cryptography will discourage even quantum-powered hackers

Complex algebraic structures called lattices will become a valuable tool in the age of quantum computers. With more and more sensitive data being collected and stored online, security measures will need to keep pace with the growing capability of hackers, as virtually unlimited amounts of computing power become cheaper and more available.

Until now ever-more complex cryptography – from 64-bit encryption to 128 bit and 256 bit – has been the standard response to the increasing amount of CPU power available to hackers. As quantum computing becomes mainstream, this will no longer be enough.

“The reality is there’s constantly a battle on with cybersecurity, we need to make sure we continue to have cryptography and encryption that can keep the bad guys out, and all of that relies on the fact that the maths is so hard to do that trying to solve it with a computer takes an unreasonable amount of time,” Welser says.

“We have to make sure that as computers get faster, we can continue to keep ahead of them. In particular, this is a concern with the quantum computers that are coming up.”

Lattice cryptography involves encoding data within high-dimensional algebraic structures which even theoretical million-qubit quantum computers will find tough to crack. It also opens up the possibility of Fully Homomorphic Encryption (FHE), which will enable computers to operate on data while it is still in an encrypted state – eliminating the security flaw inherent in existing systems whereby data has to be decrypted (and thus made vulnerable to hackers) in order to be processed. This could, for example, mean credit reference systems which can make credit scoring decisions without personal data ever being exposed.

Close Menu
×
×

Cart

test